3.1279 \(\int \frac{\sqrt{\cos (c+d x)} (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=184 \[ -\frac{\sqrt{2} (a-b) (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 a A \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 b B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

(2*b*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a
]*d) - (Sqrt[2]*(a - b)*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c +
d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (2*a*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a
 + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.602296, antiderivative size = 184, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 54, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4265, 4086, 4023, 3808, 206, 3801, 215} \[ -\frac{\sqrt{2} (a-b) (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 a A \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 b B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*b*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a
]*d) - (Sqrt[2]*(a - b)*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c +
d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (2*a*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a
 + a*Sec[c + d*x]])

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 4086

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^n)/(f*n), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{2 a A \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{1}{2} a (A b-a (A-B))+\frac{1}{2} a b B \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{a}\\ &=\frac{2 a A \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}}-\left ((a-b) (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx+\frac{\left (b B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx}{a}\\ &=\frac{2 a A \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{\left (2 (a-b) (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}-\frac{\left (2 b B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}\\ &=\frac{2 b B \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}-\frac{\sqrt{2} (a-b) (A-B) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}+\frac{2 a A \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.416894, size = 137, normalized size = 0.74 \[ \frac{\sin (c+d x) \left (\sqrt{2} (a-b) (A-B) \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )+2 a A \sqrt{1-\sec (c+d x)}-2 b B \sqrt{\sec (c+d x)} \sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right )}{d \sqrt{\cos (c+d x)-1} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],
x]

[Out]

((2*a*A*Sqrt[1 - Sec[c + d*x]] - 2*b*B*ArcSin[Sqrt[Sec[c + d*x]]]*Sqrt[Sec[c + d*x]] + Sqrt[2]*(a - b)*(A - B)
*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]])*Sin[c + d*x])/(d*Sqrt[-1 + Co
s[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.389, size = 282, normalized size = 1.5 \begin{align*}{\frac{-1+\cos \left ( dx+c \right ) }{ad \left ( \sin \left ( dx+c \right ) \right ) ^{2}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( -2\,A\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}a-B\sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) b+B\sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) b+2\,A\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) a-2\,A\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) b-2\,B\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) a+2\,B\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) b \right ) \sqrt{\cos \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A*a+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/d*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(-2*A*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2)*a-B*2^(1/2)
*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*b+B*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(c
os(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*b+2*A*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*a-2*A*ar
ctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*b-2*B*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*a+2*B*ar
ctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*b)*cos(d*x+c)^(1/2)/a/sin(d*x+c)^2/(-2/(cos(d*x+c)+1))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.69847, size = 1202, normalized size = 6.53 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

-1/2*((sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 4*sqrt(2)*sin(1/2*d*x + 1/2*c
))*A*sqrt(a) - (sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sq
rt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*B*sqrt(a) - (sqrt(2)*
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*A*b/sqrt(a) + (sqrt(2)*log(cos(1/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2
+ 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))) + 2) + log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
 + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - log(2*cos(1/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(s
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)
)) + 2))*B*b/sqrt(a))/d

________________________________________________________________________________________

Fricas [A]  time = 0.804709, size = 1439, normalized size = 7.82 \begin{align*} \left [\frac{4 \, A a \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) +{\left (B b \cos \left (d x + c\right ) + B b\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 4 \, \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (\cos \left (d x + c\right ) - 2\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac{\sqrt{2}{\left ({\left (A - B\right )} a^{2} -{\left (A - B\right )} a b +{\left ({\left (A - B\right )} a^{2} -{\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} + \frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt{a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt{a}}}{2 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac{2 \, A a \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt{2}{\left ({\left (A - B\right )} a^{2} -{\left (A - B\right )} a b +{\left ({\left (A - B\right )} a^{2} -{\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \sqrt{-\frac{1}{a}} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{-\frac{1}{a}} \sqrt{\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) +{\left (B b \cos \left (d x + c\right ) + B b\right )} \sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{a d \cos \left (d x + c\right ) + a d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

[1/2*(4*A*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*b*cos(d*x + c) + B*b)
*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos
(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + sqrt(2)*((A - B)*a^2
- (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x
 + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d), (2*A*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c
))*sin(d*x + c) + sqrt(2)*((A - B)*a^2 - (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*sqrt(-1/a)*ar
ctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) + (B*b*cos(d*
x + c) + B*b)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \left (a + b \sec{\left (c + d x \right )}\right ) \sqrt{\cos{\left (c + d x \right )}}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))*sqrt(cos(c + d*x))/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \sec \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(cos(d*x + c))/sqrt(a*sec(d*x + c) + a), x
)